цилиндрических резервуаров // Материалы по стальным конструкциям. – М. : ПСК, 1958. – \mathbb{N}_2 3. – С. 185 – 215.

- 3. **Иштиряков М. С.** Напряженно-деформированное состояние днища вертикального цилиндрического резервуара / М. С. Иштиряков, В. Б. Галеев // ВНИИОЭНГ Транспорт и хранение нефти и нефтепродуктов. − 1977. № 2. С. 28 29.
- 4. **Иштиряков М.** С. Расчет днища и стенки вертикальных цилиндрических резервуаров большой вместимости / М. С. Иштиряков, В. Б. Галеев // ВНИИОЭНГ Транспорт и хранение нефти и нефтепродуктов. − 1978. № 6. С. 8 9.
- 5. **Галеев В. Б.** Расчет нижнего узла сопряжения корпуса и днища резервуаров / В. Б. Галеев, Л. В. Короткова // ВНИИОЭНГ Транспорт и хранение нефти и нефтепродуктов. 1978. № 6. С. 38 39.
- 6. **Мущанов В. Ф.** Исследование напряженно-деформированного состояния уторного узла в вертикальных цилиндрических резервуарах объемом 10 000...50 000 м^3 / В. Ф. Мущанов, Д. И. Роменский // Металлические конструкции. − 2012. − Т. 18. № 1. С. 61 71.
- 7. **Бояршинов С. В.** Основы строительной механики машин. М.: Машиностроение. 1973. 456 с.
- 8. Проектирование складов нефти и нефтепродуктов с давлением насыщенных паров не выше 93,3 кПа ВБН В.2.2-58.1-94 (взамен СНиП 11-106-79). К. : Госкомнефтегаз Украины, 1994. 149 с.
- 9. Welded Steel Tanks for Oil Storage. API Standard-650 (9^{th} Ed.). American Petroleum Institute Standard, Washington D. C. 1993.
- 10. Правила устройства вертикальных цилиндрических резервуаров для нефти и нефтепродуктов (ПБ 03-381-00). M.: 2001. 86 с.

УДК 681.5:66.046:517.958

АНАЛИТИЧЕСКОЕ ИССЛЕДОВАНИЕ ДИНАМИКИ РАЗОГРЕВА ОДНОРОДНОГО ТЕЛА

В. С. Ткачев, к. т. н., А. В. Костенко, асп.

Ключевые слова: моделирование, нагрев, распределение температуры, однородное тело

Введение. При термической обработке керамических и других изделий важно знать распределение температуры по их объему. Использование такой информации позволит точнее выдерживать среднюю температуру обработки и исключить недопустимые перепады температуры путем выбора рациональной интенсивности нагрева, что также способствует экономии энергоресурсов.

В настоящее время контроль процесса термической обработки производится по температуре поверхности изделий и по температуре внутри печи.

Анализ публикаций. Существующие аналитические методы исследования процесса переноса тепла связаны с решением уравнений в частных производных [1] и не обеспечивают требуемого быстродействия для оперативного контроля процесса нагрева в реальном времени.

Разработка аналитических методов контроля распределения температуры в объемном теле по информации о настоящей температуре наружной поверхности, ее изменении в течение всего процесса обработки позволит повысить качество обрабатываемых изделий и снизить расход энергоносителей.

Применение инженерных методов расчета и имитационного моделирования дает возможность визуального анализа изменения температуры внутри обрабатываемого изделия.

Цель статьи. Разработать методику определения значений температуры во времени и по объему однородного тела произвольной формы, аппроксимировав его набором элементарных кубиков. Составить систему уравнений, описывающих тепловые процессы, используя уравнения тепловых балансов каждого кубика и уравнения теплопередачи между их смежными гранями. Решение этой системы уравнений, описывающих динамику нагрева, осуществить с помощью программного обеспечения, предназначенного для моделирования динамических систем MATLAB Simulink 4.O. Проиллюстрировать возможность определения расчетным путем динамики нагрева кубического однородного тела, разбив его на 27 элементов. Оценить степень равномерности температур.

Вісник ПДАБА

Основной материал исследований. Математическое описание динамики теплового процесса распределения тепла в однородном теле представляет собой уравнения в частных производных и решение их связано с определенными трудностями [1; 6]. Анализ динамических свойств такого процесса возможен при решении дифференциальных уравнений и использовании методов математического моделирования. Современное программное обеспечение облегчает решение этой задачи. [2; 3; 5].

Для исследования динамики нагрева однородного тела необходимо в некоторые моменты времени знать внутреннюю температуру. Для этого предлагается разбить его на $m \times n \times k$ секторов (частей). Если тело расположить в системе координат, то X = 1, 2...(i-1), i, (i+1)...m; Y = 1, 2...(j-1), j, (j+1)...n; Z = 1, 2...(h-1), h, (h+1)...k.

Далее необходимо составить систему уравнений, которая описывает тепловые процессы, происходящие при нагреве однородного тела. Она состоит из $m \times n \times k$ уравнений (для каждого сегмента) и имеет вид (1):

$$\begin{split} Q_{111} &= 3A \int_{0}^{1} \left(\theta_{111} - \theta_{0}\right) \, dt + A \int_{0}^{1} \left(\theta_{111} - \theta_{121}\right) \, dt + A \int_{0}^{1} \left(\theta_{111} - \theta_{211}\right) \, dt \\ \theta_{111} &= \frac{Q_{111}}{mc} + \theta_{0} \\ Q_{11R} &= 3A \int_{0}^{1} \left(\theta_{11R} - \theta_{0}\right) \, dt + A \int_{0}^{1} \left(\theta_{11R} - \theta_{12R}\right) \, dt + A \int_{0}^{1} \left(\theta_{11R} - \theta_{21R}\right) \, dt + A \int_{0}^{1} \left(\theta_{211} - \theta_{11(R-1)}\right) \, dt \\ \theta_{11R} &= \frac{Q_{11R}}{mc} + \theta_{0} \\ Q_{1n1} &= 3A \int_{0}^{1} \left(\theta_{1n1} - \theta_{0}\right) \, dt + A \int_{0}^{1} \left(\theta_{1n1} - \theta_{1(n-1)1}\right) \, dt + A \int_{0}^{1} \left(\theta_{1n1} - \theta_{2n1}\right) \, dt + A \int_{0}^{1} \left(\theta_{1n1} - \theta_{1n2}\right) \, dt \\ \theta_{1n1} &= \frac{Q_{11R}}{mc} + \theta_{0} \\ Q_{1n1} &= 3A \int_{0}^{1} \left(\theta_{1n1} - \theta_{0}\right) \, dt + A \int_{0}^{1} \left(\theta_{1n1} - \theta_{1n(R-1)}\right) \, dt + A \int_{0}^{1} \left(\theta_{1n1} - \theta_{2n1}\right) \, dt + A \int_{0}^{1} \left(\theta_{1n1} - \theta_{1n2}\right) \, dt \\ \theta_{1n1} &= \frac{Q_{11R}}{mc} + \theta_{0} \\ Q_{11R} &= 3A \int_{0}^{1} \left(\theta_{m11} - \theta_{0}\right) \, dt + A \int_{0}^{1} \left(\theta_{m11} - \theta_{(m-1)11}\right) \, dt + A \int_{0}^{1} \left(\theta_{m11} - \theta_{m21}\right) \, dt + A \int_{0}^{1} \left(\theta_{m11} - \theta_{m12}\right) \, dt \\ \theta_{1n1} &= \frac{Q_{m1}}{mc} + \theta_{0} \\ Q_{m11} &= 3A \int_{0}^{1} \left(\theta_{m11} - \theta_{0}\right) \, dt + A \int_{0}^{1} \left(\theta_{m11} - \theta_{m1(R-1)}\right) \, dt + A \int_{0}^{1} \left(\theta_{m11} - \theta_{m21}\right) \, dt + A \int_{0}^{1} \left(\theta_{m11} - \theta_{m12}\right) \, dt \\ \theta_{m11} &= \frac{Q_{m1}}{mc} + \theta_{0} \\ Q_{m11} &= 3A \int_{0}^{1} \left(\theta_{m11} - \theta_{0}\right) \, dt + A \int_{0}^{1} \left(\theta_{m11} - \theta_{m1(R-1)}\right) \, dt + A \int_{0}^{1} \left(\theta_{m11} - \theta_{m21}\right) \, dt + A \int_{0}^{1} \left(\theta_{m11} - \theta_{m12}\right) \, dt \\ \theta_{m11} &= \frac{Q_{m1}}{mc} + \theta_{0} \\ Q_{m11} &= 3A \int_{0}^{1} \left(\theta_{m11} - \theta_{0}\right) \, dt + A \int_{0}^{1} \left(\theta_{m11} - \theta_{m1(n-1)1}\right) \, dt + A \int_{0}^{1} \left(\theta_{m11} - \theta_{m21}\right) \, dt + A \int_{0}^{1} \left(\theta_{m11} - \theta_{m12}\right) \, dt \\ \theta_{m11} &= \frac{Q_{m1}}{mc} + \theta_{0} \\ Q_{m11} &= \frac{Q_{m1}}{mc} + \theta_{0} \\ Q_{m12} &= \frac{Q_{m1}}{mc} + \theta_{0} \\ Q_{m2} &= \frac{Q_{m1}}{mc} + \theta_{0} \\ Q_{m2} &= \frac{Q_{m2}}{mc} + \theta_{$$

где
$$A = S \cdot \frac{\lambda}{\delta}$$
;

 λ – коэффициент теплопроводности, $\frac{\mathit{Bm}}{\mathit{M}\cdot\mathit{spad}}$;

 δ – толщина сектора, M;

S – площадь поверхности, через которую происходит теплообмен, M^2 ;

Q – количество переданной теплоты, Д ж;

m – масса кубика, $\kappa \epsilon$;

c — теплоемкость материала нагреваемого тела, $\frac{\not\square \mathscr{H}}{\kappa z \cdot zpa\partial};$

 θ_b – θ_p – разность температур смежных граней сектора, C° , b, p – индексы каждого сектора.

Для иллюстрации предлагаемого метода построим математическую модель динамики нагрева и реализуем её в Simulink 4.0.

Для построения математической модели процесса распределения тепла предлагается разбить исследуемое однородное тело в виде куба на 27 элементарных кубиков с толщиной δ . Присвоим каждому кубику индекс в виде [XYZ].

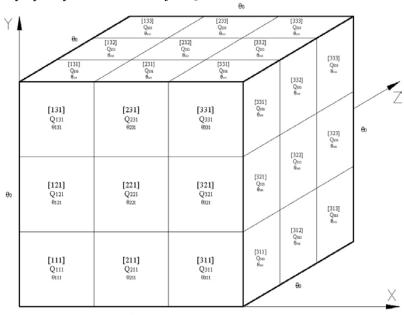


Рис. 1. Разбиение куба на элементарные кубики

Принимаются следующие допущения:

- 1. Температура внутри каждого кубика постоянна.
- 2. Тепловое сопротивление сосредоточено на границах смежных граней кубиков.
- 3. Наружная температура не меняется во времени.
- 4. Тепловой поток подводится ко всем граням.

Допущения позволяют составить уравнения теплового баланса для каждого кубика, а также учесть взаимное влияние друг на друга.

Развития методов визуально-ориентированного программирования позволяет моделировать сложные взаимосвязанные динамические системы. Использование программного продукта MATLAB 6.0 и пакета моделирования динамических систем Simulink 4.0 дает возможность разработать и реализовать модель нестационарных процессов распределения тепла в однородном теле. [2; 5].

Описание тепловых процессов. Если предположить, что каждый элементарный кубик представляет собой плоскую стенку, то, исходя из закона распространения теплоты путем теплопроводности (закона Фурье) получаем:

$$Q = \int_{0}^{t} \frac{\lambda}{\delta} \cdot S \cdot (\theta_{1} - \theta_{0}) dt;$$
 (2)

$$Q = m \cdot c \cdot (\theta_1 - \theta_0). \tag{3}$$

Присвоим буквенное обозначение каждой грани: левой — L, правой — P, верхней — V, нижней — N, передней — F, задней — Z. Следовательно, температуры, сосредоточенные на каждой грани, будут обозначаться как: TL, TP, TV, TN, TF, TZ.

Используя формулу (2) запишем уравнение количества теплоты для нагрева элементарного кубика в общем виде:

$$Q_{ijh} = Q_{Lijh} + Q_{Pijh} + Q_{Vijh} + Q_{Nijh} + Q_{Fijh} + Q_{Zijh} = \int_{0}^{t} \frac{\lambda}{\delta} S \cdot (\theta_{1} - \theta_{0}) dt$$
 (4.1)

Количество теплоты, передаваемое через каждую грань элементарного кубика, будет равно:

$$Q_{ijh} = Q_{Lijh} + Q_{Pijh} + Q_{Vijh} + Q_{Nijh} + Q_{Fijh} + Q_{Zijh} = \frac{1}{6} \cdot \int_{0}^{t} \frac{\lambda}{\delta} \cdot S \cdot (\theta_1 - \theta_0) dt., \qquad (4.2)$$

где $Q_{Lijh}, Q_{Pijh}, Q_{Vijh}, Q_{Nijh}, Q_{Fijh}, Q_{Zijh}$ — количество теплоты, передаваемое через каждую грань, Дж .

Для получения реальных результатов моделирование выполнялось для тела в виде куба со стороной 0,105 м, состоящего из глины с коэффициентом теплопроводности 0,8 $\frac{Bm}{M \cdot 2pad}$ и

теплоемкостью 900 $\frac{\cancel{\square}\cancel{36}}{\kappa z \cdot zpa\partial}$, а также плотностью материала 1500 $\frac{\kappa z}{\cancel{M}^3}$. При этом $\delta=0{,}035$ м.

Примечание. В приведенных формулах при реализации имитационной модели время исчисляется в секундах.

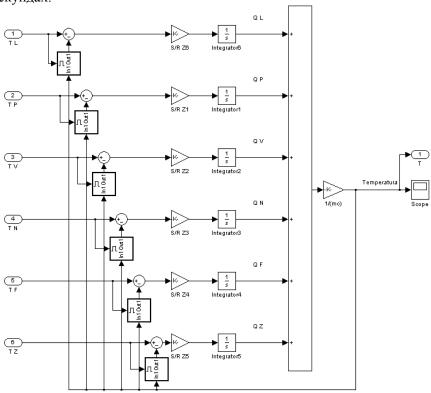


Рис. 2. Реализация модели нагрева элементарного кубика

Входными величинами являются температуры, сосредоточенные на каждой грани (TL, TP, TV, TN, TF, TZ), выходной величиной – температура кубика (T). Блок $\frac{1}{mc}$ используется для выделения средней температуры кубика.

На рисунке 3 представлена блок-схема модели, которая описывает тепловые процессы, протекающие в переднем слое куба.

Процессы, протекающие в переднем слое куба, идентичны процессам, протекающим в заднем слое куба.

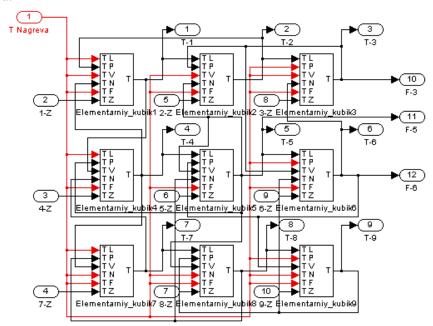


Рис. 3. Реализация модели нагрева переднего слоя куба

Входными величинами являются: температура нагрева (T Nagreva), температуры кубиков среднего слоя куба (1–Z – 9–Z), выходными: температуры каждого кубика переднего слоя. Как уже отмечалось, каждый слой состоит из 9 элементарных кубиков: 4 – угловых, 4 – боковых, 1 – центральный.

Процессы, протекающие в среднем слое куба, отличаются тем, что тепло к передним и задним граням кубиков передается теплопроводностью от кубиков переднего и заднего слоя и зависит от температуры последних. Далее – аналогично.

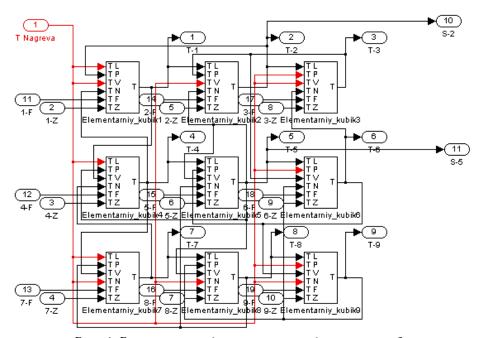


Рис. 4. Реализация модели нагрева среднего слоя куба

Решение уравнений, описывающих динамику тепловых процессов, происходящих при нагреве куба, разбитого на три слоя и состоящего из 27 кубиков, в программной среде MATLAB Simulink представлено на рисунке 5.

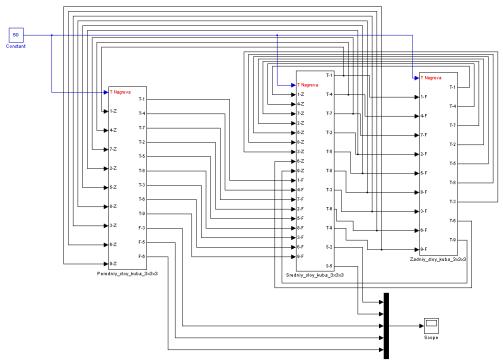


Рис. 5. Реализация модели нагрева куба, разбитого на три слоя

Входные величины: температура нагрева, выходные величины: температуры внутреннего кубика, средних кубиков граней, средних кубиков ребер, угловых кубиков. Подсистемы: Peredniy_sloy_kuba_3x3x3 — описывает процессы, происходящие в переднем слое куба, Sredniy_sloy_kuba_3x3x3 — описывает процессы, происходящие в среднем слое куба, Zadniy_sloy_kuba_3x3x3 — описывает процессы, происходящие в заднем слое куба.

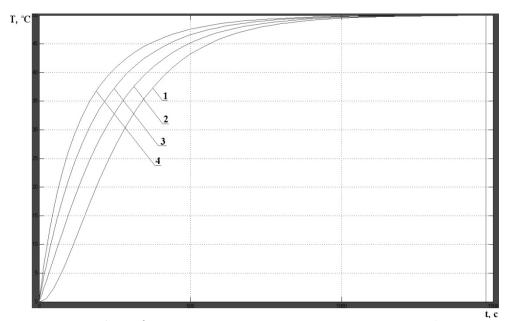


Рис. 6. Графики изменения температуры во времени в кубиках

Описание графиков: 1 – изменение температуры внутреннего кубика ([222]), 2 – изменение температуры средних кубиков на гранях куба ([122], [322], [232], [212], [221], [223]), 3 – изменение температуры средних кубиков на ребрах куба ([121], [123], [321], [323], [231], [233], [211], [213], [132], [332], [112], [312]), 4 – изменение температуры угловых кубиков куба ([111], [131], [311], [331], [133], [313], [333]) (См. рис. 1.).

Выводы. 1. Разработанная и реализованная в среде MATLAB модель динамики нагрева однородного тела может быть использована для совершенствования управления тепловыми установками.

- 2. Предлагаемый способ позволяет контролировать температуру внутри тела в процессе тепловой обработки.
- 3. С увеличением коэффициента теплопроводности материала уменьшается максимально допустимый температурный перепад по толщине; с увеличением скорости нагрева это отличие возрастает.
- 4. С помощью предложенного способа можно определить допустимую скорость нагрева изделия.
- 5. Разработанная модель позволяет исследовать динамику нагрева объемных тел и оценивать степень равномерности температур по сечению.
- 6. Модель нагрева позволяет определять закон изменения температуры и достигать равномерности прогрева изделия.

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА

- 1. **Баумштейн И. П.** Автоматизированные системы управления тепловыми процессами в керамической и стекольной промышленности / И. П. Баумштейн Л. : Стройиздат, Ленингр. отд., 1979. 88 с.
- 2. **Дьяконов В.** Simulink 4 Специальный справочник / Владимир Дьяконов. СПб. : Питер, 2002. 528 с.
- 3. Дьяконов В. МАТLAВ 6 : учебный курс / Владимир Дьяконов СПб, Питер, 2001. $592~\mathrm{c}$.
- 4. **Исламов М. Ш.** Проектирование и эксплуатация промышленных печей / М. Ш. Исламов. Л. : Химия, 1986. 280 с.
- 5. **Краснопрошина А. А.** Современный анализ систем управления с применением MATLAB, Simulink, Control System: учеб. пособ. / А. А. Краснопрошина, Н. Б. Репникова, А. А. Ильченко К.: Корнейчук, 1999. 144 с.
- 6. **Мастрюков Б. С.** Теплотехнические расчеты промышленных печей / Б. С. Мастрюков М.: Металлургия, 1972. 368 с.
- 7. **Никифорова Н. М.** Основы проектирования тепловых установок при производстве строительных материалов / Н. М. Никифорова М. : Высшая школа, 1974. 144 с.
- 8. Справочник по теории автоматического управления / Под ред. А. А. Красовского М. : Наука, 1987. 711 с.
- 9. **Зобнин Б. Ф.** Теплотехнические расчеты металлургических печей: учеб. пособ. для студ. вузов / Б. Ф. Зобнин, М. Д. Казяев, Б. И. Китаев и др., изд. (2-е изд.). М. : Металлургия, 1982. 360 с.
- 10. **Ткачов В. С.** Розробка моделі теплових процесів у тунельній печі / В. С. Ткачев // Вісник Придніпр. держ. акад. будівниц. та архітект. Д. : ПДАБА, 2008. № 11. С. 41 47.
- 11. **Ткачев В. С.** Применение тепловой модели для адаптивного программного управления температурой в помещении / В. С. Ткачев, А. В. Ужеловский // Вісник Придніпр. держ. акад. будівниц. та архітект. Д. : ПГАСА, 2009. № 2. С. 26 32.
- 12. **Ткачев В. С.** Исследование динамики нагрева плоских изделий методами визуальноориентированного моделирования / В. С. Ткачев // Вісник Придніпр. держ. акад. будівниц. та архітект. Д. : ПГАСА, 2011. № 1 2. С. 46 51.

УДК 624.953:624.046.03

ОСОБЕННОСТИ ПОВЕДЕНИЯ ВЕРТИКАЛЬНЫХ ЦИЛИНДРИЧЕСКИХ РЕЗЕРВУАРОВ ПРИ ВЕТРОВОЙ НАГРУЗКЕ

Ю. В. Ивченко, к. т. н.

Ключевые слова: напряженно-деформированное состояние, ветровая нагрузка, цилиндрическая оболочка, устойчивость

Постановка задачи. Стальные вертикальные цилиндрические резервуары наиболее часто применяются в химической, нефтяной и газовой промышленности как емкости, предназначенные для хранения жидкостей и газов. В настоящей работе рассматриваются стальные резервуары, используемые для хранения нефти и нефтепродуктов. Согласно