Impact of nanomodifiers on mechanical and physical properties of gypsum binders

V. M. Derevianko, H. M. Hryshko

Abstract


Problem statement. In the next 10 years, more than 90 % of materials will be replaced with new materials – nanocomposites [1]. The nanocomponents application will allow manufacture of high-strength materials with reduced production cost and will ensure demand for products [2]. Researches aimed to determination of carbon nanotube type nanomodifier concentration impact on the physical and mechanical properties of gypsum binders are important today and must result in creation of competitive strong nano-materials. Purpose. Research of carbon nanotube (CNT) type nanomodifier concentration impact on the physical and mechanical properties of gypsum binders. Conclusion. Sample microstructure analysis revealed that the non-modified gypsum sample structure is dominated by prismatic and lamellar crystals randomly distributed throughout the matrix volume. In this case, loose structure with increased porosity is formed, which results in sample mechanical strength reduction. In the CNT-modified gypsum matrix, well-ordered and homogeneous structure is formed with larger needle-shaped crystals, which results in the phase-contacting area increase, porosity reduction and thus the physical and mechanical characteristics improvement. It is experimentally proved that at the identical nano-modifier content in the gypsum matrix (0.035 %), maximum compression strength gain is achieved with the use of CNT and makes 28‑ 30 %. At the use of initial carbon nanotubes, increase in strength at the same nano-modifier content makes 13‑15 %. The Ca2+ ions interaction with the graphene-like carbon surface was investigated by the DFT method. Capability is demonstrated of the covalent calcium bonding with the hexagonal carbon surface cell as a result of overlap of Ca2+ valence 3p orbitals and carbon 2р orbitals.

Keywords


gypsum binder; nanomodifiers; carbon nanotubes; nanofibres; nanocomposites; concentration; strength; carbon cell

References


Noguen Chan Hing. Modificirovanie uglerodnyx nanotrubok i nanovolokon dlya polucheniya keramicheskix nanokompozitov dis. kand. texn. nauk: 05.17.02 [Modification of carbon nanotubes and nanofibers for the ceramic nanocomposites production. Dissertation of Cand. Sc. (Tech.): 05.17.02]. Moskva, 2009, 119 p. (in Russian).

Nekrasova N. Nanotexnologii dlya dorog [Nanotechnologies for roads]. Nauka i zhizn' [Science and Life]. 2016, no. 2, p. 60. (in Russian).

Zaporockova I.V. Uglerodnye i neuglerodnye nanomaterialy i kompozicionnye struktury na ix osnove: dis. d-ra fiz.-mat. nauk: 05.27.01 [Carbon and non-carbon nanomaterials and composite structures on their base: dissertation of Dr. Sc. (Phys.-Math.): 05.27.01]. Volgograd, 2005, 119 p. (in Russian).

Ajayan P.M. and Lijama S. Capillarity-induced filling of carbon nanotube. Nature. 1993, vol. 361, pp. 333–334.

Züttela A, Sudana P., Maurona Ph., Kiyobayashib T., Emmeneggera Ch. and Schlapbacha L. Hydrogen storage in carbon nanostructures. International Journal of Hydrogen Energy. 2002, vol. 27, iss. 2, pp. 203–212.

Dillon A.C., Jones K.M., Bekkedahl T.A., Kiang C.H., Bethune D.S. and Heben M.J. Storage of hydrogen in single-walled carbon nanotubes. Nature. 1997, vol. 386, pp. 377-379.

Ebbesen T.W. Carbon nanotubes. Annual Review of Materials Science. 1994, vol. 24, pp. 235–264.

Pederson M.R. and Broughton J.Q. Nanocapillarity in Fullerene Tubules. Physical Review Letters. 1992, vol. 69, iss. 18, pp. 2689–2692.

Eleckij A.V. Uglerodnye nanotrubki [Carbon nanotubes]. Uspexi fizicheskix nauk [Successes in physical sciences.]. 1997, vol. 167, no. 9, pp. 945–972. (in Russian).

Ajayan P.M. and Ebbesen T.W. Nanometre-size tubes of carbon. Reports on Progress in Physics. 1997, vol. 60, no. 10, p. 1025.

Yavor A.A., Zaporockova I.V, Kislova T.V. and Chebotarev A.V. Vliyanie defektnoj struktury v zernax plastichnyx sloev mnogoslojnogo obrazca pri polzuchesti v usloviyax rastyazheniya [Influence of a defective structure in the plastic layers grains of a multilayered sample under creep under stretching conditions]. Fizika i ximiya obrabotki materialov [Physics and chemistry of material processing]. 1987, no. 3, pp. 114–116. (in Russian).

Skvorcov I. Truboprovody pod zashhitoj «nano» [Pipelines under the protection of "nano"]. Nauka i zhizn' [Science and Life]. 2016, no. 2, pp. 61. (in Russian).

Ma R.Z., Wu J., Wie B.Q., Liang J. and Wu D.H. Processing and properties of carbon nanotubes-nano-SiC ceramic. Journal of Materials Science. 1998, vol. 33, іss. 21, pp. 5243–5246.

Chumak A.G., Derevyanko V.N., Petrunin S.Yu., Popov M.Yu. and Vaganov V.E. Struktura i svojstva kompozicionnogo materiala na osnove gipsovogo vyazhushhego i uglerodnyx nanotrubok [Structure and properties of a composite material based on gypsum binder and carbon nanotubes]. Nanotexnologii v stroitel'stve [Structure and properties of a composite material based on gypsum binder and carbon nanotubes]. 2013, no. 2, pp. 27–37. Available at: http://nanobuild.ru/en_EN/journal/Nanobuild-2-2013/27-37.pdf. (in Russian).

Reshetnyak V.V., Vaganov V.E., Petrunin S.Yu., Chumak A.G. and Popov M.Yu. Vzaimodejstvie ionov kal'ciya s karkasnymi uglerodnymi strukturami [Interaction of calcium ions with carcass carbon structures]. Stroitel'stvo, materialovedenie, mashinostroenie [Construction, Materials Science, Mechanical Enginering]. Pridnepr. gos. akad. str-va i arxitektury [Prydniprovs’ka State Academy of Civil Engineering and Architecture]. Dnepropetrovsk, 2013, iss. 67, pp. 261–266. (in Russian).


GOST Style Citations


Ногуен Чан Хинг. Модифицирование углеродных нанотрубок и нановолокон для получения керамических нанокомпозитов  дис. … канд. техн. наук : 05.17.02 / Ногуен Чан Хинг. – Москва, 2009. – 119 с.

 

Некрасова Н. Нанотехнологии для дорог / Наталья Некрасова // Наука и жизнь. – 2016. – №2. – С. 60.

 

Запороцкова И. В. Углеродные и неуглеродные наноматериалы и композиционные структуры на их основе: дис. … д-ра физ.-мат. наук : 05.27.01 / Запороцкова И. В. – Волгоград, 2005. – 119 с.

 

Ajayan P. M. Capillarity-induced filling of carbon nanotube / P. M. Ajayan, S. Lijama // Nature. – 1993. – Vol. 361. – P. 333–334.

 

Hydrogen storage in carbon nanostructures / A. Züttela, P. Sudana, Ph. Maurona, T. Kiyobayashib, Ch. Emmeneggera, L. Schlapbacha // International Journal of Hydrogen Energy. – 2002. – Vol. 27, iss. 2. – P. 203–212.

 

Storage of hydrogen in single-walled carbon nanotubes / Dillon A. C., Jones K. M., Bekkedahl T. A., Kiang C. H., Bethune D. S., Heben M. J. // Nature. – 1997. – Vol. 386. – P. 377-379.

 

Ebbesen T. W. Carbon nanotubes / T. W. Ebbesen // Annual Review of Materials Science. – 1994. – Vol. 24. – P. 235–264.

 

Pederson M. R. Nanocapillarity in Fullerene Tubules / M. R. Pederson, J. Q. Broughton // Physical Review Letters. – 1992. – Vol. 69, iss. 18. – P. 2689–2692.

 

Елецкий А. В. Углеродные нанотрубки / А. В. Елецкий // Успехи физических наук. – 1997. – Т. 167, № 9. – С. 945–972.

 

Ajayan P. M. Nanometre-size tubes of carbon / P. M. Ajayan, T. W. Ebbesen // Reports on Progress in Physics. – 1997. – Vol. 60, № 10. – P. 1025.

 

Влияние дефектной структуры в зернах пластичных слоев многослойного образца при ползучести в условиях растяжения / А. А. Явор, И. В. Запороцкова, Т. В. Кислова, В. А. Чеботарев // Физика и химия обработки материалов. – 1987. – № 3. – С.114–116.

 

Скворцов И. Трубопроводы под защитой «нано» / Иван Скворцов // Наука и жизнь. – 2016. – № 2. – С. 61.

 

Processing and properties of carbon nanotubes-nano-SiC ceramic / R. Z. Ma, J. Wu, B. Q. Wie, J. Liang, D. H. Wu // Journal of Materials Science. – 1998. –Vol. 33, іss. 21. – P. 5243–5246.

 

Структура и свойства композиционного материала на основе гипсового вяжущего и углеродных нанотрубок / Чумак А. Г., Деревянко В. Н., Петрунин С. Ю., Попов М. Ю., Ваганов В. Е. // Нанотехнологии в строительстве. – 2013. – № 2. –С. 27–37. – Режим доступа:  http://nanobuild.ru/en_EN/journal/Nanobuild-2-2013/27-37.pdf.

 

Взаимодействие ионов кальция с каркасными углеродными структурами / В. В. Решетняк, В. Е. Ваганов, С. Ю. Петрунин, А. Г. Чумак, М. Ю. Попов // Строительство, материаловедение, машиностроение : сб. науч. тр. / Приднепр. гос. акад. стр-ва и архитектуры. – Днепропетровск, 2013. – Вып. 67 : Стародубовские чтения. – С. 261–266.



Refbacks

  • There are currently no refbacks.