DOI: https://doi.org/10.30838/J.BPSACEA.2312.250918.81.200

Stressed-deformed condition in composite in conditions of continuous pure life

I. I. Davydiv, N. A. Pogrebnyak

Abstract


Formulation of the problem. In the mechanics of deformable solids and in the support of materials, as well as in the mechanics of composite materials, the main simple types of stress-strain state are used such as: pure tensile, pure compression and pure shear. In the case of pure tension (compression), in addition to longitudinal deformations (deformations along the direction of uniaxial stress), transverse deformations arise (deformations are normal to the load axis). With a pure shear, normal deformations to the shear planes are not taken into account. However, as shown in Part 1 and Part 2 of inelastic clean shear studies [10], in homogeneous materials with different resistance of tension and compression there are deformations normal to the displacement planes. In composite materials, such studies have not been conducted. The solution of tasks of this type in the mechanics of a deformable solid and in the support of materials, as well as in the mechanics of composite materials is not provided. Goal. On the basis of the methods and conditions of the mechanics of deformable solids and the resistance of materials, as well as earlier studies on inelastic clean shear [10], to determine the effect of linear continuous reinforcement of a composite on its deformation properties under pure shear. Conclusions. The stiffness of a composite at displacement (with a matrix having different plastic properties under tension and compression) beyond the elasticity of the matrix increases with increasing stiffness of the reinforcing elements even if the reinforcing elements are not capable of accepting the shearing forces. In studies of a stress-strain state in equations and systems of equations of equilibrium of effort it is necessary to take into account the deformation properties of materials both in tension and compression.


Keywords


pure shift; limits of elasticity; reinforcement characteristic; condition of plasticity; normal deformations are brought down to the shear planes; normal stresses are given to the shear planes; normal deformations are given to planes free of displacement; symmetry of deformations; composite; matrix;

References


Belyaev N.M. Soprotivlenie materialov [Resistance of materials]. Moskva: Nauka, 1978, 608 p. (in Russian).

Kovalchuk B.I., Lebedev A.A. and Umanskiy S.E. Mekhanika neuprugogo deformirovaniya materialov i elementov konstruktsiy [Mechanic of inelastic deformation of materials and eliminates]. Kiev: Naukova dumka, 1987, 280 p. (in Russian).

Vasilev V.V.and Protasov V.D. eds. Kompozitsionnyie materialyi [Composite materials]. Moskva: Mashinostroenie, 1990, 512 p. (in Russian).

Pisarenko G.S. and Lebedev A.A. Deformirovanie i prochnost materialov pri slozhnom napryazhennom sostoyanii [Deformaton and strength of materials in the complex tense state]. Kiev: Naukova dumka, 1976, 416 p. (in Russian).

Primakov V.P., Pogrebnyak N.A., Ovsienko E.I. and Naumenko E.I. O matematicheskoy modeli opisaniya diagramm rastyazheniya (szhatiya) konstruktsionnyih materialov [Concerning mathematical model of description of diagram of stretching of construction materials]. Stroitelnoe proizvodstvo. [Construction industry]. N-d. inst. bud. vyrob [N-d institute constr. prod.]. Kiev, 2007, no. 48, pp. 40–44. (in Russian).

Rabotnov Yu.N. Soprotivlenie materialov. [Strenth of mateerials]. Moskva: Fizmatgiz, 1962, 456 p. (in Russian).

Timoshenko S.P., Gere Dg. and Grigoliuk E.I ed. Mehanika materialov [Mechanics of materials]. Moskva: Mir, 1976, 672 p. (in Russian).

Mettyuz F and Rolings R. Kompozitsionnyie materialyi [Compose material]. Mehanika i tehnologiya [Mechanics and technology]. Moskva: Tehnosfera, 2004, 408 p. (in Russian).

Yatsenko V.F. Prochnost kompozitsionnyih materialov [Strength of composite materials]. Kiev: Vyischa shkola, 1988, 197 p.

Davydov I., Pogrebnyak N. and Kovtun K. Dependence of normal deformations on shear strins under the condition of plasticity of tresca-saintvenant. Sustainable housing and human settlement, Dnipro: Bratislava, 2018, pp. 120–129. (in Russian).


GOST Style Citations


Беляев Н. М. Сопротивление материалов / Н. М. Беляев. – Москва : Наука, 1978. – 608 с.

Ковальчук Б. И. Механика неупругого деформирования материалов и элементов конструкций / Б. И. Ковальчук, А. А. Лебедев, С. Э. Уманский. – Киев : Наукова думка, 1987. – 280 с.

Композиционные материалы : справочник / под общ. ред. В. В. Васильева, Ю. М. Тарнопольского. – Москва : Машиностроение, 1990. – 512 с.

Писаренко Г. С. Деформирование и прочность материалов при сложном напряженном состоянии / Г. С. Писаренко, А. А. Лебедев. – Киев : Наукова думка, 1976. – 416 с.

О математической модели описания диаграмм растяжения (сжатия) конструкционных материалов / В. П. Примаков, Н. А. Погребняк, Е. И. Овсиенко, Е. И. Науменко // Будівельне виробництво : міжвід. наук.-техн. зб. / Н.-д. ін-т буд. вир-ва. – Київ, 2007. – Вип. 48. – С. 40–44.

Работнов Ю. Н. Сопротивление материалов / Ю. Н. Работнов. – Москва: Физматгиз, 1962. – 456 с.

Тимошенко С. П. Механика материалов / С. П. Тимошенко, Дж. Гере ; пер. с англ. Л. Г. Корнейчука ; под ред. Э. И. Григолюка. – Москва : Мир, 1976. – 672 с.

Мэттьюз Ф. Композитные материалы. Механика и технология / Ф. Мэттьюз, Р. Ролингс ; пер. с англ. С. Л. Баженова. – Москва : Техносфера, 2004. – 408 с.

Яценко В. Ф. Прочность композиционных материалов / В. Ф. Яценко. – Київ : Выща школа, 1988.– 197 с.

Davydov I. Dependence of normal deformations on shear strаins under the condition of plasticity of tresca-saint-venant / I. Davydov, N. Pogrebnyak, K. Kovtun // Sustainable housing and human settlement : monograph. – Dnipro ; Bratislavа, 2018. – Pp. 120–129.