DOI: https://doi.org/10.30838/J.BPSACEA.2312.250918.100.202

The defense of staff from air shock waves by controlling their spread in extended buildings

N. N. Nalisko

Abstract


Purpose. Development and research of ways to control the propagation of shock air waves due to constructive and planning solutions for the purpose of protecting personnel during emergency explosions, in conditions of preserving the technological section of canals and workings in extended structures. Justification of the parameters of numerical simulation in CFD models of discontinuous internal flow of a gas stream. Methodology. The research was carried out on the basis of search and analysis of publications on the topic of the work, an analysis of the research object was used for the mathematical formulation of the problem and the justification of the boundary conditions and parameters of numerical simulation. To substantiate the rational configurations of the reflecting-wave chambers, an analytical evaluation of the interaction of the shock air-wave front with the backward step, the chamber wall and the concave angle was performed. By numerical simulation, the physical processes controlling the propagation of shock air waves. Findings. An analysis of the physical processes occurring during the control of the propagation of shock air waves with the aid of chambers of reflecting waves made it possible to reveal a number of qualitative and quantitative laws governing the motion of the wave front at the interface with the branch channels. The mechanism of action of a reflecting wave formed in a chamber by a reflected shock wave on a supersonic flow is shown. To effectively control the propagation of strong shock air waves with an excess pressure of more than 0.1 MPa, it is necessary to use chambers reflecting waves with an inclination angle of the reflection surface close to 45°. Originality. The parameters of the numerical simulation of the propagation of the shock air wave through the system of reflected waves in the FlowVision modeling environment are substantiated. An analytical evaluation of the parameters of the wave front is made during diffraction of the backward step directly in the chambers of the reflecting waves, movement along its wall and reflection on the inclined surface. The dependence of the effectiveness of controlling the shock air-wave on the parameters of the chambers. Practical value. Reasonable rational parameters of the reflecting wave chambers allow to increase the efficiency of personnel protection from the action of shock air waves in the extended structures of civil defense and mining facilities.

Keywords


shock air waves; propagation control; waveguide camera; numerical experiment; branch channel

References


Bulat A.F., Fichev V.V. and. Yashchenko I.A Sostoyanie tekhniki bezopasnosti i effektivnosti funktsionirovaniya protivoavariynoy zashchity ugolnykh shakht. [The state of safety and efficiency of the operation of emergency protection of coal mines]. Dnipropetrovsk, OOO «Nord-Kompyuter», 2005, 266 p. (in Russian).

SNiP 2.01.54-84 Zashchitnye sooruzheniya grazhdanskoy oborony v podzemnykh gornykh vyrabotkakh. [Civil defense defense structures in underground mine workings]. Moscow: GUP TsPP, 1998, 20 p. (in Russian).

DNAOP 1.1.30–4.01.97 Statut DVHRS po orhanizatsii i vedenniu hirnychoriatuvalnykh robit. [Statute of the DVGRS for the organization and conduct of mine-rescue works]. Kyiv, Minvuhleprom, 1997, 445 p. (in Ukrainian)

Frolov S.M. Effektivnost oslableniya udarnykh voln v kanalakh razlichnymi sposobami. [Efficiency of attenuation of shock waves in channels in various ways]. Fizika goreniya i vzryva. [Physics of combustion and explosion]. 1993, no. 1, pp. 34-39. (in Russian).

Sin A.F. and Chernykh A.V. Patent 2404365 RU, MPK E21F5 / E21F17/103. Sposob gasheniya vzryvnoy udarnoy volny. [Patent 2404365 RU, IPC E21F5 / E21F17/103. The method of damping an explosive shock wave]. The applicant OAO "Voenizirovannaya gornospasatelnaya, avariyno-spasatelnaya chast" (RU); zayavl. 27.01.2009; opubl. 20.11.2010. (in Russian).

Bass G.A. Patent 2027018 RU, MPK F42D5/045. Sposob gasheniya vozdushnykh udarnykh voln pri vzryvnykh rabotakh. [Patent 2027018 RU, IPC F42D5/045. The method of damping air shock waves during blasting operations]. The applicant Bass G.A.; № zayav. 5045902/03; zayavl. 03.06.1992; opubl. 20.01.1995. (in Russian).

Plotnikov V.M., Abinov A.G., Mitrofanov V.P., Rogov M.G. and Loginov Yu.A. A.s. 964184 RU, MKI3 E 21 F 5/00. Ustroystvo dlya gasheniya energii udarnoy volny v gornoy vyrabotke. [Author's certificate 964184 RU, MKI3 E 21 F 5/00. Device for damping the energy of the shock wave in the mine workings]. № 2913346/22-03, zayavl. 18.04.80, opubl. 07.10.82, Bulletin. no. 37, 2 p. (in Russian).

Posobie po obsledovaniyu i proektirovaniyu zdaniy i sooruzheniy, podverzhennykh vozdeystviyu vzryvnykh nagruzok. [A manual for the inspection and design of buildings and structures subject to explosive loads]. Moscow, AO «TsNIIPromzdaniy», 2000, 122 p. (in Russian).

Mishuev A.V. Vozdushnaya udarnaya volna v sooruzheniyakh. [Air shock wave in structures]. Moscow, MGSU, 2015, 408 p. (in Russian).

Nigmatullin I.V., Vishnev A.V. and Nigmatullin V.S. Patent 2408788 RU, MPK E21F5 / E21F17/103. Sposob zashchity ot udarnoy vozdushnoy volny i produktov vzryva. [Patent 2408788 RU, IPC E21F5 / E21F17/103. The way to protect against shock air and explosion products]. The applicant Kazan State University of Architecture and Civil Engineering, zayavl. 18.06.2009; opubl. 10.01.2011. (in Russian).

Bazhenova T.V., Gvozdeva L.G. and Nettleton M.A. Unsteady interactions of shock waves. Progress in Aerospace Sciences, 1984, vol. 21, pp. 249-331. DOI 10.1016/0376-0421(84)90007-1.

Stanyukovich K.P. Neustanovivshiesya dvizheniya sploshnoy sredy. [Unsteady motion of a continuous medium]. Moscow, Nauka, 1971, 854 p. (in Russian).

Orlenko L.P. (in all.) Fizika vzryva. [Physics of explosion]. Moscow, FIZMATLIT, 2002, 832 p.

Bazhenova T.V., Gvozdeva L.G. Nestatsionarnoe vzaimodeystvie udarnykh voln. [Nonstationary interaction of shock waves]. Moscow, Nauka, 1977, 274 p.


GOST Style Citations


1. Состояние техники безопасности и эффективности функционирования противоаварийной защиты угольных шахт / А.Ф. Булат, В.В. Фичев, И.А. Ященко, [и др.]. – Днепропетровск: ООО «Норд-Компьютер», 2005. – 266 с;

2. СНиП 2.01.54-84 Защитные сооружения гражданской обороны в подземных горных выработках / Минземстрой России. – М.: ГУП ЦПП, 1998. – 20 с.

3. ДНАОП 1.1.30–4.01.97 Статут ДВГРС по організації і веденню гірничорятувальних робіт.– Київ: Мінвуглепром, 1997.– 445 с.

4. Фролов С.М. Эффективность ослабления ударных волн в каналах различными способами / С.М. Фролов // Физика горения и взрыва.– 1993.– № 1.– С. 34-39.

5. Патент 2404365 RU, МПК E21F5 / E21F17/103. Способ гашения взрывной ударной волны / А.Ф. Син, А.В. Черных;  Заявитель ОАО "Военизированная горноспасательная, аварийно-спасательная часть" (RU); заявл. 27.01.2009; опубл. 20.11.2010. http://www.freepatent.ru/patents/2404365

6. Патент 2027018 RU, МПК F42D5/045. Способ гашения воздушных ударных волн при взрывных работах / Г.А. Басс; Заявитель Г.А. Басс.– № заяв. 5045902/03; заявл. 03.06.1992; опубл. 20.01.1995.

7. А.с. 964184 RU, МКИ3 E 21 F 5/00. Устройство для гашения энергии ударной волны в горной выработке / В. М. Плотников, А. Г. Абинов, В.П. Митрофанов, М.Г. Рогов, Ю.А. Логинов (RU). – № 2913346/22-03; заявл. 18.04.80 ; опубл. 07.10.82, Бюл. № 37.–2 с.

8. Пособие по обследованию и проектированию зданий и сооружений, подверженных воздействию взрывных нагрузок.– М.: АО «ЦНИИПромзданий», 2000.– 122 с;

9. Мишуев А.В. Воздушная ударная волна в сооружениях / А.В. Мишуев.– М.: МГСУ, 2015.– 408 с;

10. Патент 2408788 RU, МПК E21F5 / E21F17/103. Способ защиты от ударной воздушной волны и продуктов взрыва / И.В. Нигматуллин, А.В. Вишнев, В.С. Нигматуллин; Заявитель Казанский государственный архитектурно-строительный университет; заявл. 18.06.2009; опубл. 10.01.2011.

11. Bazhenova T.V., Gvozdeva L.G. and Nettleton M.A. (1984) Unsteady interactions of shock waves. Progress in Aerospace Sciences, vol. 21, pp. 249-331. DOI 10.1016/0376-0421(84)90007-1.

12. Станюкович К.П. Неустановившиеся движения сплошной среды / К.П. Станюкович.– М.: Наука, 1971.– 854 с.

13. Физика взрыва /Под ред. Л.П. Орленко.– М.: ФИЗМАТЛИТ, 2002.– 832 с.

14. Баженова Т.В., Гвоздева Л.Г. Нестационарное взаимодействие ударных волн.– М.: Наука, 1977.– 274 с.