Carbon-containing composites based on metals

V. E. Vaganov


Problem statement  Among the developed technologies metal-composites production,a special place takes powder metallurgy, having fundamental differences from conventionally used foundry technologies. The main advantages of this technology are: the possibility of sensetive control, the structure and phase composition of the starting components, and ultimately the possibility of obtaining of bulk material in nanostructured state with a minimum of processing steps. The potential reinforcers metals include micro and nano-sized oxides, carbides, nitrides, whiskers. The special position is occupied with carbon nanostructures (CNS): С60 fullerenes, single-layer and multi-layer nanotubes, onions (spherical "bulbs"), nano-diamonds and graphite,their properties are being intensively studied in recent years. These objects have a high thermal and electrical conductivity values, superelasticity, and have a strength approximate to the theoretical value, which can provide an obtaining composite nanomaterial with a unique set of physical and mechanical properties. In creation of a metal matrix composite nanomaterials (CM), reinforced by various CNS, a special attention should be given to mechanical activation processes (MA) already at the stage of preparation of the starting components affecting the structure, phase composition and properties of aluminum-matrix composites.

Purpose. To investigate the influence of mechanical activation on the structure and phase composition of aluminum-matrix composites.

Conclusion. The results of the study of the structure and phase composition of the initial and mechanically activated powders and bulk-modified metal-composites are shown, depending on the type and concentration of modifying varieties CNS, regimes of MA and parameters of compaction. The study is conducted of tribological properties of Al-CNS OF nanostructured materials.


structure; fullerene; aluminum; crystallites; mechanoactivation; carbides


Vaganov V.E., Zakharov V.D., Abramov D.V., Ratiev S.N., Ryabtsev A.D., Pashinskiy V.V. and Solov'eva L.A. Strukturoobrazovanie pri spekanii poroshkovykh materialov sistemy zhelezo-uglerodnye nanotrubki (nanovolokna) [Structure formation during sintering of powder materials of the iron-carbon nanotubes (nanowires)]. Materialovedenie [Material science]. 2011, no. 2, pp. 53-56. (in Russian).

Vaganov V.E., Shchetinin Yu.A., Astredinov V.M., Zakharov V.D. and Reshetnyak V.V. Issledovanie struktury i svoystv kompozitsionnykh materialov na osnove medi modifitsirovannoy uglerodnymi nanostrukturami posle deformatsionnoy i termicheskoy obrabotki [The study of the structure and properties of composite materials based on copper of modified carbon nanostructures after the deformation and heat processing]. Konstruktsii iz kompozitsionnykh materialov [Construction from compositional materioals]. 2013, no. 3(131), pp. 11-15. (in Russian).

Laplaze D, Bernier P., Maser W.K., Flamantb G., Guillardb T. and Loiseauc A. Carbon nanotubes: the solar approach. Carbon.1998, vol. 36, iss. 5/6, pp. 685-688.

Rodriguez N. M. A review of catalytically grown carbon nanofibers. Journal of materials research. 1993, vol. 8, iss. 12, pp. 3233-3250.

Kechin V.A. and Vaganov V.E. Osnovnye tendentsii sozdaniya nanostrukturirovannykh materialov [The main tendencies of creating nanostructured materials]. Metallurgiya i mashinostroenie [Metallorgy and mechanical engineering ]. 2010, no. 2, pp. 27-30. (in Russian).

Koyama T. Formation of carbon fibers from benzene. Carbon. 1972, vol. 10, iss. 6, pp. 757-758.

Baird T. Fryer J.R. and Grant B. Carbon formation on iron and nickel foils by hydrocarbon pyrolysis—reactions at 700°C. Carbon. 1974, vol. 12, iss. 5, pp. 591-602.

Oberlin A., Endo M. and Koyama T. Filamentous growth of carbon through benzene decomposition. Journal of crystal growth. 1976, vol. 32, pp. 335-349.

Tibbets G. G. Carbon fibers produced by pyrolysis of natural gas in stainless steel tubes. Applied physics letters. 1983, vol. 42, pp. 666-667.

Tibbets G.G. Why are carbon filaments tubular? Journal of crystal growth. 1984, vol. 66, iss. 3, pp. 632-638.

Endo M. and Kroto W. Formation of carbon nanofibers. Journal of physical chemistry. 1992, vol. 96, pp. 6941-6944.

Charlier J.C.,Vita A.De., Blasé X. and Car R. Microscopic growth mechanisms for carbon nanotubes. Science. 1997, vol. 275, iss. 5300, pp. 647-649.

Dai H., Wong E.W. and Lieber C.M. Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes. Science. 1996, vol. 272, iss. 5261, pp. 523-526.

Vaganov V.E., Orlov V.Yu., Shibaev D.A. and Bazlov D.A. Khimicheskaya modifikatsiya uglerodnykh nanotrubok [Chemical modification of carbon nanotubes]. Izvestiya vuzov. Khimiya i khimicheskie tekhnologii [Proceedings of HEE. Chemistry and chemistry technologies]. 2011, vol. 54, no.7, pp. 38-41. (in Russian).

Vaganov V.E. and Kamanina N.V. Vliyanie uglerod-soderzhaschikh nano struktur na opticheskie i fizicheskie svoystva materialov vklyuchaya zhidkie kristally [The influence of carbon-containing nanostructures on the optical and physical properties of materials including liquid crystals]. Zhidkie kristally i ikh prakticheskoe ispol'zovanie [Liquid crystals and their practical use]. 2010, iss. no. 2, pp. 5-24. (in Rusian).

GOST Style Citations

Ваганов В. Е. Структурообразование при спекании порошковых материалов системы железо-углеродные нанотрубки (нановолокна) / В. Е. Ваганов, В. Д. Захаров, Д. В. Абрамов, С. Н. Ратиев, А. Д. Рябцев, В. В. Пашинский, Л. А. Соловьева // Материаловедение. - 2011. - № 2 - C. 53-56.


Ваганов В. Е. Исследование структуры и свойств композиционных материалов на основе меди модифицированной углеродными наноструктурами после деформационной и термической обработки / В. Е. Ваганов, Ю. А. Щетинин, В. М. Астрединов, В. Д. Захаров, В. В. Решетняк // Конструкции из композиционных материалов. - 2013. - № 3(131). - С. 11-15.


Carbon nanotubes: the solar approach / D. Laplaze, P. Bernier, W. K. Maser, G. Flamantb, T. Guillardb, A. Loiseauc // Carbon. - 1998. - Vol. 36, iss. 5/6. - P. 685-688.


Rodriguez N. M. A review of catalytically grown carbon nanofibers / N. M. Rodriguez // Journal of materials research. - 1993. - Vol. 8, iss. 12. - P. 3233-3250.


Кечин В. А. Основные тенденции создания наноструктурированных материалов / В. А. Кечин, В. Е. Ваганов // Металлургия и машиностроение. – 2010. – № 2. – С. 27-30.


Koyama T. Formation of carbon fibers from benzene / T. Koyama // Carbon. - 1972. - Vol. 10, iss. 6. - P. 757-758.


Baird T. Carbon formation on iron and nickel foils by hydrocarbon pyrolysis-reactions at 700°C / T. Baird, J. R. Fryer, B. Grant // Carbon. - 1974. - Vol. 12, iss. № 5. - P. 591-602.


Oberlin A. Filamentous growth of carbon through benzene decomposition / A. Oberlin, M. Endo, T. Koyama // Journal of crystal growth. – 1976. - Vol. 32. – P. 335-349.


Tibbets G. G. Carbon fibers produced by pyrolysis of natural gas in stainless steel tubes / G. G. Tibbets // Applied physics letters. – 1983. – Vol. 42. – P. 666-667.


Tibbets G. G. Why are carbon filaments tubular? / G. G. Tibbets // Journal of crystal growth. – 1984. – Vol. 66, iss. 3. – P. 632-638.


Endo M. Formation of carbon nanofibers / M. Endo, H. W. Kroto // Journal of physical chemistry. – 1992. – Vol. 96. – P. 6941-6944.


Microscopic growth mechanisms for carbon nanotubes / J. C. Charlier, A. De Vita, X. Blasé, R. Car // Science. – 1997. – Vol. 275, iss. 5300. – P. 647-649.


Dai H. Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes / H. Dai, E. W. Wong, C. M. Lieber // Science. – 1996. – V. 272, iss. 5261. – P. 523-526.


Химическая модификация углеродных нанотрубок / Ваганов В. Е., Орлов В. Ю., Шибаев Д. А., Базлов Д. А. // Известия вузов. Химия и химические технологии. – 2011. – Т. 54, вып. 7. – С. 38-41.


Каманина Н. В. Влияние углерод-содержащих наноструктур на оптические и физические свойства материалов включая жидкие кристаллы / Н. В. Каманина, В. Е. Ваганов // Жидкие кристаллы и их практическое использование. – 2010. – Вып. 2. – С. 5-24.